p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.47D4, C22.6SD16, C4.Q8⋊11C2, (C2×C4).39D4, C22⋊C8.6C2, C22⋊Q8.5C2, Q8⋊C4⋊13C2, C4.32(C4○D4), C4⋊C4.66C22, (C2×C8).39C22, C2.13(C2×SD16), (C2×C4).108C23, C22.104(C2×D4), (C2×Q8).17C22, C2.18(C8.C22), (C22×C4).54C22, C2.14(C22.D4), (C2×C4⋊C4).16C2, SmallGroup(64,164)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C4 — C2×C4 — C4⋊C4 — C2×C4⋊C4 — C23.47D4 |
Generators and relations for C23.47D4
G = < a,b,c,d,e | a2=b2=c2=1, d4=e2=c, dad-1=eae-1=ab=ba, ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd3 >
Character table of C23.47D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ16 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(2 30)(4 32)(6 26)(8 28)(9 22)(11 24)(13 18)(15 20)
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 22 5 18)(2 12 6 16)(3 20 7 24)(4 10 8 14)(9 25 13 29)(11 31 15 27)(17 26 21 30)(19 32 23 28)
G:=sub<Sym(32)| (2,30)(4,32)(6,26)(8,28)(9,22)(11,24)(13,18)(15,20), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,22,5,18)(2,12,6,16)(3,20,7,24)(4,10,8,14)(9,25,13,29)(11,31,15,27)(17,26,21,30)(19,32,23,28)>;
G:=Group( (2,30)(4,32)(6,26)(8,28)(9,22)(11,24)(13,18)(15,20), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,22,5,18)(2,12,6,16)(3,20,7,24)(4,10,8,14)(9,25,13,29)(11,31,15,27)(17,26,21,30)(19,32,23,28) );
G=PermutationGroup([[(2,30),(4,32),(6,26),(8,28),(9,22),(11,24),(13,18),(15,20)], [(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,22,5,18),(2,12,6,16),(3,20,7,24),(4,10,8,14),(9,25,13,29),(11,31,15,27),(17,26,21,30),(19,32,23,28)]])
C23.47D4 is a maximal subgroup of
C24.115D4 C24.183D4 C24.118D4 (C2×D4).302D4 (C2×D4).304D4 C42.226D4 C42.231D4 C42.232D4 C23⋊4SD16 C24.123D4 C24.127D4 C24.128D4 C4.162+ 1+4 C4.192+ 1+4 C42.284D4 C42.288D4 C42.290D4
C4⋊C4.D2p: C24.14D4 C4⋊C4.12D4 (C2×C4).SD16 C24.15D4 C42.354C23 C42.359C23 C42.424C23 C42.426C23 ...
C2p.(C2×SD16): C42.222D4 C42.281D4 C23.39D12 C23.34D20 C23.34D28 ...
C23.47D4 is a maximal quotient of
C4.Q8⋊10C4 (C2×C4).19Q16 C24.89D4 (C2×C8).170D4 (C2×C4).28D8
C23.D4p: C23.36D8 C23.39D12 C23.34D20 C23.34D28 ...
C4⋊C4.D2p: C24.159D4 C24.160D4 C4.68(C4×D4) C24.85D4 C2.(C8⋊3Q8) D6.1SD16 D6.2SD16 C4⋊C4.231D6 ...
Matrix representation of C23.47D4 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
16 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
4 | 8 | 0 | 0 |
13 | 13 | 0 | 0 |
0 | 0 | 12 | 5 |
0 | 0 | 12 | 12 |
16 | 15 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 10 |
0 | 0 | 10 | 1 |
G:=sub<GL(4,GF(17))| [1,16,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[4,13,0,0,8,13,0,0,0,0,12,12,0,0,5,12],[16,0,0,0,15,1,0,0,0,0,16,10,0,0,10,1] >;
C23.47D4 in GAP, Magma, Sage, TeX
C_2^3._{47}D_4
% in TeX
G:=Group("C2^3.47D4");
// GroupNames label
G:=SmallGroup(64,164);
// by ID
G=gap.SmallGroup(64,164);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,362,50,1444,376,88]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^4=e^2=c,d*a*d^-1=e*a*e^-1=a*b=b*a,a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^3>;
// generators/relations
Export
Subgroup lattice of C23.47D4 in TeX
Character table of C23.47D4 in TeX